Friday, October 29, 2010

Water on the Moon

With the discovery of evidence confirming the existence of water on the Moon on October 9, 2009, the Moon is no longer thought of as a dry space rock. NASA's Lunar Crater Observation and Sensing Satellite, or LCROSS, has reportedly found a significant amount of frozen water on the floor of a lunar crater.


Centaur being launched towards the Moon by LCROSS (Image: NASA).

LCROSS was designed to look for signs of water near the Moon's South Pole. The probe itself was successful at detecting natural water in the form of ice particle debris within the impact plumes created by the empty Centaur rocket stage's collision with the Moon.


The satellite's impact locations on the Moon's surface (Images: NASA).

The satellite made a total of two collisions on the Moon's surface, which were studied by it, the Lunar Reconnaissance Orbiter (LRO) partner satellite, and telescopes all over the world. The first LCROSS impact was from the Centaur rocket component, ejected towards Cabeus crater (red) near the Moon's South Pole (green). Once water particles were successfully identified, the second impact was caused by the LCROSS probe itself crashing into the surrounding Cabeus crater area (blue) to complete the mission. The LRO remained in orbit collecting data and did not undergo any collision.

Lunar water can be used by astronauts as a natural resource while in space. It is not practical to transport the amount of Earth water needed for long-term human space exploration into space, so this discovery provides astronauts with a longer potential stay on the Moon. The LCROSS and LRO were the first two missions carried out by NASA as a part of the United States' 2004 Vision for Space Exploration program, designed to increase public enthusiasm for space exploration.

NASA has been preparing for a return mission to the Moon in order to conduct research and attempt to live off the land in 2018 or 2019, a date that would mark the 50th Anniversary of NASA's first manned Moon landing, Apollo 11 (1969).