The videos featured here are from the
channel.
Please Like & Subscribe!
Entropy, Exergy, & Equilibrium States: What Is Randomness, Order, & Equilibrium in Physical Systems?
Theories for Unified Gravity: The Standard Model, String Theory (w/ M-Theory), & E8 Theory
Hypothetical Particles: The Tachyon & Quantum Entanglement, the Multiverse, and Graviton
Special Relativity & General Relativity: The Practical History and Theoretical Similarities

Showing posts with label NASA. Show all posts
Showing posts with label NASA. Show all posts

Tuesday, September 27, 2022

James Webb Space Telescope Images



Webb’s First Deep Field (Image: NASA, ESA, CSA, & STScI)

Technological advancements into our exploration of outer space by the James Webb Space Telescope (JWST) have helped us increase the furthest distance and earliest time we have ever rendered starry objects into image by looking out toward the Universe.

Stephan’s Quintet (Image: NASA, ESA, CSA, & STScI)

Thanks to a team of developers from NASA, ESA, & CSA that began work on Hubble's successor, or Next Generation Space Telescope, in 1996 up until its launch in December 2021, the James Webb telescope is an upgrade to our vision into space and the objects that warp spacetime such as stars, exoplanets, galaxies, and even black holes.

Tuesday, June 16, 2020

Supermassive Black Hole Silhouette

A close-up image of the M87 galaxy core and the supermassive black hole at its center (Image: NASA).

On April 10, 2019, the first-ever image of a supermassive black hole's silhouette was captured and presented by a team of international astronomers. The network of telescopes known as the Event Horizon Telescope (EHT) set out to obtain an image of a black hole using a technique called Very Long Baseline Interferometry (VLBI). This image depicts the center of the galaxy M87, 53 million light-years away with a noticeable dark spot at its core.

Sunday, May 22, 2016

Extrasolar Planets

The status of Pluto as a planet was never entirely certain for over 75 years since its discovery. It is the tenth largest planetary object in order of ascending size, right after dwarf planet Eris. Our former ninth planet was discovered by Clyde W. Tombaugh on February 18, 1930, and it is the most widely recognized dwarf planet in our Solar System, and the Kuiper belt's largest object. Pluto's status as the ninth planet from our Sun was reviewed in 2006 due to an International Astronomical Union debate on how to classify such large objects. Even up to this current day and age, despite its status demotion to dwarf planet, Pluto is still widely regarded as a favorite among planetary objects in our Solar System and these provocative photographs were taken as firsts by the New Horizons satellite just last year to finally show just how much of a mysterious and puzzling place it really is.

The New Horizons space probe was designed by NASA to study the extreme conditions of dwarf planet Pluto and its natural satellite Charon, about 3.6 billion miles away from our Sun. This mission, not unlike NASA's Messenger probe, which also finalized a journey to explore the innermost conditions of our Solar System near Mercury earlier the same year, took nine and a half years to complete since its launch in January 19, 2006. The New Horizons satellite was successful at localizing and imaging Pluto and its moon, also detecting many surprising and familiar surface features including an atmosphere, glaciers, mountainous regions, great plains, and even water ice distributed all over its surface terrain. Arriving at Pluto has appealed to our collective sense of bewilderment for reminding us about how beautiful and exciting rediscovering a foreign planet really is.


Pluto with its moon Charon on the left as New Horizons quickly approaches its main objective (Image: NASA).

In the midst of this first look at Pluto as our ex-ninth planet, we now have theories of a new extrasolar object, harboring ten times the gravity on Earth and a wondrously eccentric orbit, located right outside our Solar System. The ninth planet spot is now more coveted than ever!

Wednesday, December 19, 2012

Robotic Vehicles on Mars

Interest in exploring the Red Planet started with the first robots designed to investigate it in the 1960s, and continues today with the Mars Science Laboratory rover Curiosity, where recent efforts have shown to be what looks like evidence of an ancient riverbed and organic compounds on the Martian surface. Organic compounds are those with molecules containing carbon and are potential indicators of life.


Mars and Earth riverbeds in comparison (Image: NASA).


A landscape of Mars captured by Pathfinder in 1997 (Image: NASA).

Mars is the fourth planet from our Sun and is believed to be about 10.7% the mass of Earth and approximately half of its size. It is currently thought that sustainable life on Mars may be possible and might have existed there a long time ago, if Earth and Mars share similar planetary histories. We know that they both have polar ice caps, an atmosphere, and exceptional terrain features. With several vehicles set to test for habitability on Mars in the future, humans will be able to properly assess whether a manned mission to Mars prevails as a safe and advantageous exploration plan.

Wednesday, April 4, 2012

Deep Space Satellite Exploration


Both Voyager 1 and 2 are displayed above (Images: NASA).

The NASA/JPL Voyager Satellite Program actively controls these two satellites. Launched in 1977, they are at the present moment the farthest known, still working man-made objects to ever travel across our Solar System. Please enjoy the link provided!

Special Note: The first artificial satellite to complete an orbital circuit around our planet was Sputnik 1, on October 4, 1957. This date marks the beginning of what is classically referred to as the Space Age. :-]

Friday, October 29, 2010

Water on the Moon

With the discovery of evidence confirming the existence of water on the Moon on October 9, 2009, the Moon is no longer thought of as a dry space rock. NASA's Lunar Crater Observation and Sensing Satellite, or LCROSS, has reportedly found a significant amount of frozen water on the floor of a lunar crater.


Centaur being launched towards the Moon by LCROSS (Image: NASA).

LCROSS was designed to look for signs of water near the Moon's South Pole. The probe itself was successful at detecting natural water in the form of ice particle debris within the impact plumes created by the empty Centaur rocket stage's collision with the Moon.


The satellite's impact locations on the Moon's surface (Images: NASA).

The satellite made a total of two collisions on the Moon's surface, which were studied by it, the Lunar Reconnaissance Orbiter (LRO) partner satellite, and telescopes all over the world. The first LCROSS impact was from the Centaur rocket component, ejected towards Cabeus crater (red) near the Moon's South Pole (green). Once water particles were successfully identified, the second impact was caused by the LCROSS probe itself crashing into the surrounding Cabeus crater area (blue) to complete the mission. The LRO remained in orbit collecting data and did not undergo any collision.

Lunar water can be used by astronauts as a natural resource while in space. It is not practical to transport the amount of Earth water needed for long-term human space exploration into space, so this discovery provides astronauts with a longer potential stay on the Moon. The LCROSS and LRO were the first two missions carried out by NASA as a part of the United States' 2004 Vision for Space Exploration program, designed to increase public enthusiasm for space exploration.

NASA has been preparing for a return mission to the Moon in order to conduct research and attempt to live off the land in 2018 or 2019, a date that would mark the 50th Anniversary of NASA's first manned Moon landing, Apollo 11 (1969).