The European Space Agency (ESA) has confirmed last November 12, 2014, the very first time that a spacecraft, known by the name of Rosetta, was able to successfully drop its lander Philae onto the comet nucleus of 67P/Churyumov-Gerasimenko after a ten year long voyage that began in March of 2004. As far as a soft landing goes, this event had a lengthy bounce to remember, placing the instrument in a deeply-shadowed region on the surface of 67P, where it was able to conduct partially its scientific exploration. After a few days of gathering data from the ice and vapor on the comet's exterior, Philae's batteries were almost completely depleted, with just enough energy to transmit fresh results back to the Rosetta mothership orbiting approximately 19 mi (30 km) above the surface. The lander, now in a state of hibernation, does have a backup solar-panel power source and just might receive enough sunlight to reactivate itself within the next few months. In addition, Rosetta is the first spacecraft to effectively orbit and escort a comet as it reaches its perihelion alongside component Philae.
Rosetta's Philae lander grips the surface of comet 67P in this illustration (Image: ESA).
It is thought that because of this study, 67P's water composition is mostly different from that of Earth's, and objects with this kind of provenance or composition indigenous to the Kuiper belt are not responsible for Earthly aqueous bodies. This mission is considered to be a great accomplishment for astrophysics, uncovering new and old motivations for space travel including mining extraterrestrial objects and discovering water's potential origin. Although it is not unlike NASA's early landing on an asteroid in 2001, an upcoming German and Japanese satellite is expected to achieve a similar endeavor with another space rock in the future in order to gain a better understanding of the resources available from space that are relevant to life.
Technicolor blogging about inspiring developments in physical science.
The videos featured here are from the
channel.
Please Like & Subscribe!
Please Like & Subscribe!
Entropy, Exergy, & Equilibrium States: What Is Randomness, Order, & Equilibrium in Physical Systems? | Theories for Unified Gravity: The Standard Model, String Theory (w/ M-Theory), & E8 Theory |
Hypothetical Particles: The Tachyon & Quantum Entanglement, the Multiverse, and Graviton | Special Relativity & General Relativity: The Practical History and Theoretical Similarities |